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Abstract— Simultaneous localization and mapping (SLAM)
has been an emerging research topic in the fields of robotics,
autonomous driving, and unmanned aerial vehicles over the
past thirty years. State of the art SLAM research is often inac-
cessible for undergraduate student researchers due to expensive
hardware and difficult software setup. We present a cost-
friendly vehicle research platform and a robust implementation
of SLAM. Our SLAM algorithm fuses visual stereo image and
2D light detection and ranging (Lidar) data and uses loop
closure for accurate odometry estimation. Our algorithm is
benchmarked against other popular SLAM algorithms using
the publicly available KITTI dataset and shown to be very
accurate. For educational purposes, we publicly share the
models and code presented in this work*.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the
process by which a mobile robot can build a map of an
environment and at the same time use this map to compute
its own location [7]. In other words, it comprises the
simultaneous estimation of the state of a robot equipped with
on-board sensors, and the construction of a model (the map)
of the environment that the sensors are perceiving. In simple
instances, the robot state is described by its pose (position
and orientation), although other quantities may be included
in the state, such as the robot’s velocity, sensor biases, and
calibration parameters. The map, on the other hand, is a
representation of aspects of interest (e.g., the position of
landmarks, obstacles, etc.) describing the environment in
which the robot operates [4].

There are many situations where a map is needed. For
example, a map may be in need to support other tasks like
informed path planning. However, most importantly, the map
allows limiting the errors committed in estimating the state of
the robot [4]. In the absence of a map, dead-reckoning would
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quickly drift over time; on the other hand, using a map, e.g.,
a set of distinguishable landmarks, the robot can reset its
localization error by revisiting known areas, also referred to
as loop closure. Therefore, SLAM finds applications in many
scenarios in which a prior map is not available and needs to
be built [4].

SLAM has been formulated and solved as a theoretical
problem in a number of different forms [7]. It has also been
implemented in a number of different domains including
indoor robots, outdoor robots, and underwater and airborne
systems. At a theoretical and conceptual level, SLAM can
now be considered to be a solved problem pertaining to
the estimation of the trajectory of a moving robot and
building a map of its environment simultaneously [17].
However, in practice, substantial issues remain in realizing
more general SLAM solutions and notably in building and
using perceptually rich maps as part of a SLAM algorithm
[7]. Even though the formulation of the SLAM problem has
been well established and the robotics research community
has seen tremendous progress over the past few decades,
there are still a many open problems left unsolved including
fail-safe SLAM algorithms, efficient map representations, and
resource-aware SLAM systems [4]. Furthermore, a general
SLAM solution that can run in real time and adapt to the
available computing platforms has not yet been proposed.
Also, many of the existing SLAM algorithms fail to identify
previously visited locations and correct the corresponding
odometry estimations, thus performing loop closure [6].

We introduce a robust and flexible multi-sensor data fusion
architecture that leverages state-of-the-art Lidar algorithms.
Our system provides custom configurations to allow further
research, for example, in innovative image registration algo-
rithms, frame matching algorithms, and backend nonlinear
least-squares pose-graph solvers. We have also supplemented
the multi-sensor data fusion model with the necessary
hardware, control, and planning module to provide a cost-
friendly autonomous driving platform. This platform, with
the physical form of a differential drive robot, is capable of
driving around in an unknown environment, creating a map
of its surroundings and performing autonomous navigation
to any targeted location in the self-created map.

The rest of this paper is organized as follows. In Section II,
we provide a high-level overview of multi-sensor data fusion.
Then, we present our multi-sensor data fusion pipeline in
Section III. The system implementation, along with hardware
and software dependencies, is then described in Section IV.
Our experimental results are shown in Section V. Finally, we
present our conclusions and explore possible future work.



II. BACKGROUND
An autonomous mobile robot operates by processing

information from its surroundings and then making intelligent
and accurate driving decisions. This means that the perception
system, the very first module to acquire peripheral information
on which other parts of the platform depend, needs to be as
robust and accurate as possible to safeguard the performance
of the whole system. A system operating with a single
sensor often fails to capture the rich physical attributes of
the environment. The camera, a typical visual perception
sensor, is likely to fail in environments where the lighting
intensity is dramatically changed or the lighting intensity
is particularly low. On the other hand, a radar sensor has a
longer sensing distance and lower computational demands but
is less accurate than the light imaging detection and ranging
(Lidar) in terms of angular accuracy. Due to the inherent
vulnerability of the single-sensor system, multi-sensor data
fusion has become an overarching paradigm for avoiding
single-point failure and enhancing the system with reduction
in ambiguity and uncertainty, increase in accuracy, robustness
against interference, etc [15]. For instance, Tesla’s Autopilot
leverages a hardware suit of eight cameras, a forward-looking
radar, and twelve ultrasonic sensors to ensure 360 degrees of
visibility for its perception system.

In the last decade, significant progress has been made in the
field of multisensor data fusion to solve problems related to
combining multimodel data efficiently and support intelligent
robots in decision making [2], [3], [12]. The diversity offered
by multiple sensors can positively contribute to the perception
task of the intelligent robot. Overcoming heterogeneity of
different sensors through robust fusion algorithms lead to
effective utilization of the redundancy across the sensors [5].
However, data coming from different sources are typically
in different formats and also propagate different sensing
uncertainties. Multisensor data fusion research is typically
focused on the effective alignment of different sensor streams
which could be either partially, geometrically, or temporally
aligned [13]. The introduction of the multi-sensor data fusion
model, though effective in theory, does lead to some practical
challenges including how to handle noise in the operation,
data imputation, the determination of where in the processing
pipeline to perform the fusion algorithm, and how and when to
keep or drop the previously acquired information. Moreover,
due to inevitable sensor manufacturing variations, extreme
external calibration efforts across the sensors is often needed
to ensure the performance of the fusion architecture.

III. PROJECT DESCRIPTION
To address the problems mentioned in Section II and

to maximize the cost efficiency along with the mapping
accuracy, we introduced a loosely coupled time-stamp-based
multi-sensor data fusion architecture which leverages camera
and Lidar data as default. On top of the default fusion
setup, the system provides custom configuration freedom for
researchers to add additional sensor modality and experiment
with various fusion algorithms. The default fusion architecture,
which leverages the state-of-the-art Lidar SLAM pipeline and

multiple visual place recognition algorithms, ensures the basic
functionality for accurate mapping with global closure and
reduces the unnecessary exterior calibration effort [19].

In Figure 1, the features of a few typical implementations
of the SLAM algorithm are summarized. As can be seen, most
existing solutions do not incorprorate 2D Lidar, a camera
module, and global loop closure. For example, V-LOAM
typically does not implement loop closure even though it
uses both a 3D Lidar and a camera; however, some form
of loop closure is introduced in some relevant work [16].
Another issue is that all of them except Cartographer require
a 3D Lidar component, which is costly. The proposed solution
herein can be used with either 2D or 3D Lidar sensors in
tandem with a camera, and at the same time offers both global
loop closure and online operation.
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Fig. 1: Typical Implementations of SLAM

While state-of-the-art visual and Lidar SLAM algorithms
are equivalent in terms of accuracy, visual pipelines are more
robust for dynamic scenes and less expensive computationally.
Lidar SLAM systems, on the other hand, are more consistent
and less sensitive to changes in illumination and appearance
due to their heavy dependence on the geometric structure of
the surrounding. Even though most of modern Lidar SLAM
algorithms have shown impressive results [8], they failed to
address the drift problem over time with the assumption that
the world is an "infinite corridor" [4]. Therefore, we propose
a fusion mechanism that supplements the Lidar SLAM
algorithm with visual stereo image data for place recognition
and drift correction. In order to implement Lidar SLAM, we
tested our vehicle with various open-source libraries including
Hector SLAM, Fast SLAM, and Gmapping. In this section,
we discuss the various Lidar-SLAM libraries tested. Then, we
introduce our perception system by explaining the selection
of the sensors, the base SLAM module, and the data fusion
model proposed for the heterogeneous sensors involved.

A. Lidar-SLAM Libraries

Hector SLAM was developed for a system capable of
autonomous exploration in Urban Research and Rescue envi-
ronments [11]. It serves as a general open-source algorithm,
which only needs minor modifications to operate on a given
platform. A remarkable feature of this algorithm is that it
does not necessarily need the odometry data to support its
operation. Another feature of Hector SLAM is its elevation
and cost mapping. The Hector-elevation-mapping module
allows us to fuse the point cloud measurements produced
by a stereo camera into an elevation map, resulting in a 2D



grid with another variable height stored in a corresponding
variance for each cell. Odometry, however, is notoriously
known to be unreliable in an environment where there are
many altitude changes (such as an uneven floor). Therefore,
we decided to test Hector SLAM on our data. Even though it
was able to create a map, the drift was large. This meant that
the odometry data had to be fed to the system so that the
algorithm can make more informed estimations of its pose
and create a more accurate map.

Instead of entirely relying on fast Lidar data feature
selection and scan-matching, Fast SLAM uses a particle
filter method which uses numerous small particles to perceive
a submap and then creates a complete map by stitching
those submaps together. The particles are generated randomly,
and submaps are then compared with each other to test
for agreement about the perceived environment given their
poses. In other words, a particle’s correctness is evaluated
by consensus and inference based on the other submaps.
Faulty particles are immediately discarded. Eventually, only
the particles that can make sense of each other’s submaps are
kept and used to stitch together the whole map. However, the
particle-filter-based method is relatively memory intensive
since each particle needs to be kept in a joint state matrix and
updated every frame. Also the comparison process consumes
a tremendous computing power. The problem could be largely
simplified by providing a prior map. The particles’ submaps
could then be compared with the prior map and discarded if
the difference is too large. Thus, the particle number would
quickly decrease and converge to allow the construction of a
complete map. This is especially useful in the re-localization
problem for self-driving automobiles where a prior high
definition (HD) map is available.

Gmapping has been implemented as described in Grisetti
et al. [9] and is then improved using the Rao-Blackwellized
particle filters (RBPF) method, which shares a similar idea
with the particle filter method introduced above. The key
idea behind RBPF is to estimate a posterior of potential
trajectories of the robot given its observation and its odometry
measurements. The posterior is then used to compute a
posterior over maps and trajectories and thus gives a relative
pose estimation. To do so, RBPF uses a particle filter in
which an individual map is associated with every sample.
The robot’s trajectory changes over the robot’s motion,
therefore the proposal distribution is chosen to be the same
as the probabilistic odometry motion model. One of the
most common particle filtering algorithms is the sampling
importance resampling (SIR) filter. An SIR filter incrementally
processes the observations and the odometry readings as they
become available. This is done by updating a set of samples
representing the posterior about the map and the trajectory
of the vehicle. The algorithm for RBPF is then applied by
computing an improved proposal distribution on every particle
so that information obtained from the sensors can be used
while generating the particles. This algorithm has two main
advantages: First, the algorithm draws the particles more
effectively; computing accurate proposal distribution handles
not only the movement of the robot but also the most recent

observation, which causes the uncertainty in the prediction
of the robot’s pose to decrease. Second, the highly accurate
proposal distribution allows the system to utilize the number
of effective particles as a robust indicator to decide whether
or not a resampling has to be carried out. This effect further
reduces the particle depletion problem, which refers to the
scenario where no particle is valid at all. Therefore, we
decided to use the Gmapping algorithm to implement an
improved version of the visual Lidar [9].

B. Sensors

By using the multisensor data fusion pipeline, our algorithm
can perform SLAM using a a stereo camera with a 2D or 3D
Lidar as shown in Figure 2. With this specific combination, we
can avoid disadvantages of each sensor and make the system
more robust. For example, the camera will not perform as
well as the Lidar in dark environments. However, each kind
of Lidar has its own problems: 3D Lidars are costly and 2D
Lidars alone do not offer enough resolution. To solve this
issue, we supplement the 2D Lidar with a stereo camera so
that we can extract more information from the images. This
way, researchers can perform accurate SLAM algorithms with
a cheaper 2D Lidar

Fig. 2: Sensors Used

RPLiDAR A2: Whereas Hokuyo UST-20LX scanners are
now the standard 2D Laser scanners for SLAM research,
we found the RPLIDAR A2 scanners to be a cheaper
option. Though 3D Laser scanners have the advantages
of high resolution and a 360 degree range for 3D SLAM
algorithm research, their high cost made the actuated 2D
Lidar more suitable for our purpose. With a reasonable cost,
the RPLIDAR A2 can perform 360 degree scans within a
range of 12 meters or 18 meters and generate 8000 points per
second with a 15 Hz sampling rate. Also DJI has released
Livox Mid-40, a 3D Lidar with a reasonable price, which
future researchers with a generous budget could consider for
dense mapping purposes.

ZED stereo camera: ZED is the best-suited camera for our
platform due to its detailed API documentation and its smooth
integration with the Robotics Operating System (ROS) which
most of robotics research uses. With its high resolution and
frame rate, ZED can serve multiple applications such as depth
perception, positional tracking and 3D mapping.

C. Base SLAM Module

We present a SLAM module which extends the state-of-
the-art Lidar odometry estimator, LOAM [20], with back-end
pose-graph optimization to correct drift and a place recogni-
tion system to allow global loop closure [10]. LOAM, with



its high accuracy, robustness and real-time operation, takes in
raw 3D point clouds, calculates the rigid transformation due
to the corresponding sensor motion and outputs the global
pose estimation, a local representation of the map, and the
registered point clouds. The original work has been refactored,
optimized, and made modular in this work to support custom
configuration and allow smooth adaption to other SLAM
backend solutions.

Due to the inherent drifting error in incremental odometry
estimators like LOAM, an online pose estimation back-end
is needed in the system to build the pose graph based on the
LOAM odometry estimation and correct LOAM odometry
estimation from drifting error by performing re-localization
based on the visual data. Re-localization takes place if
the system identifies previously visited places. To identify
previously visited places in the existing internal map, the
system has to periodically query the place recognition module,
which relies on the visual stereo data; this is explained in
Section III-D.

D. Data Fusion Mechanism

We propose a modular multi-sensor data fusion pipeline,
as summarized in Figure 3, where Lidar is set as the default
sensor for odometry estimation and visual stereo data is
leveraged to perform place recognition. The Lidar-based
SLAM backend keeps a set of keyframes to represent the
sensor trajectory, each having an associated time stamp. With
the stereo camera running constantly, the system registers
stereo image data to the latest keyframe and performs
cloud matching with all previously registered keyframes to
find potentially matched frames. A pose graph optimization
backend is running constantly to manage the environment
mapping and correct odometry estimation by querying the
visual place recognition system. We provide multiple state-
of-the-art visual frame matching algorithms such as visual
bag of words and SegMatch. Additionally, the system is able
to incorporate other real-time matching algorithms and fuse
with the result of existing matching algorithms [1].

When the system detects a matched frame, it calculates the
transformation between the clouds of the associated keyframes
using the iterative closest point (ICP) algorithm and adds a
new edge to the pose graph representation of the existing
map. Then, the estimated pose is fed back to the incremental
odometry estimator to correct its internal motion estimation
and perform the re-localization functionality.

IV. SYSTEM IMPLEMENTATION

To make our vehicle reasonably affordable and easier to
assemble, we designed our vehicle to be an educational
and cost-friendly research platform with minimal software
setup on which versatile applications could be run. The
hardware and computing platform are introduced in this
section with key design features including affordability and
versatility. It is worth noting that the components used for
the vehicle are resources that are inexpensive, with a total
cost of approximately $1200.

A. Hardware

We designed a custom differential drive chassis on which
any electronics and hardware can be installed. We relied on
easily accessible computer aided design (CAD) software and
prototyping tools including SolidWorks and AutoCAD. Two
Pololu 12V gear motors are used to drive the rear wheels with
a 2000-count-per-rev encoder mounted on each motor. Having
two independently-driven rear wheels gives the platform two
degrees of freedom for intuitive manipulation and control. In
addition, the built-in encoders enable wheel speed control
and could provide inaccurate odometry information to the
system for reference. Also, a custom PCB board is used
to connect electronic components and divide an electrical
power feed from the batteries into subsidiary systems. Two
12V Lithium-ion batteries are used to supply power to the
computing hardware and motors separately, which prevents
the motor’s transient voltage from interfering with the
computing hardware.

B. Computing Platform

The Nvidia Jetson TX2 is a fast, power-efficient embedded
computing device which is used as the on-board computing
processor. Jetson supports Ubuntu naively for ROS integration
and provides the necessary processing power for online 3D
mapping algorithms. The Arduino Uno is used along with the
Jetson computer as an expansion to the GPIO and interrupt
pins of the Jetson. Acting as a middleman, it exchanges
messages between the hardware and the Jetson board. A
photograph of our device with components labeled can be
seen in Figure 4.

Fig. 4: Platform Overview

V. EXPERIMENTAL EVALUATION

To evaluate the accuracy of the odometry estimation of our
proposed multisensor data fusion architecture, we fully tested
our algorithm against the publicly available KITTI odometry
benchmark dataset [8]. The result was evaluated by the metrics
employed by KITTI and compared with the LOAM module’s
result. Our architecture, with the default setup, has shown
equivalent results with LOAM for KITTI sequence 00 and



Fig. 3: Sensor Fusion Architecture

better performance than LOAM for KITTI sequence 05 by
generating a trajectory map closer to the ground truth value
in places where loop closure takes place. Figure 5 shows the
results of our algorithm running on KITTI odometry dataset
sequence 07. As depicted, our estimated trajectory is closer to
the ground truth value than the popular SLAM module, ORB
SLAM, a versatile and accurate monocular SLAM system
where the loop closure happens [14].

We also ran our algorithm in a real-world indoor environ-
ment, the 6th floor of our academic building, by adapting
the state-of-the-art 2D mapping algorithm, Cartographer [10],
to our pipeline. Figure 6 shows the generated 2D occupancy
grid map (bottom), and for comparison, the ground truth floor
plan (top). As can be seen, the results are reasonable.

Fig. 5: Experimental results on KITTI Sequence 07

Fig. 6: Top: Floor Plan, Bottom: Mapping Result

VI. CONCLUSION

A new, integrated, and modular sensor fusion architecture
has been developed and fully tested against a publicly
available data set. Experiments have validated the hypothesis
that by leveraging the redundancy across heterogeneous
sensors, multi-sensor data fusion improves accuracy and
robustness for applications such as mapping and motion
estimation. In addition, the modular pipeline provides robotics
researchers the freedom to adapt and experiment with related
algorithms.

There are many directions in which this work can be
expanded. For the multisensor data fusion model, pre-built
models for sensors of different modalities can be developed.
For example, a model can be built for the inertial measurement
unit (IMU), which is often used in modern SLAM algorithms
to improve the accuracy and robustness of mapping [18].



While we primarily focused on the perception system of
the autonomous driving platform, the control and planning
modules of the platform can be further developed to provide
more research possibilities for the future users of our platform.
Part of this work was originally presented as an IEEE
undergraduate student paper at the 2019 IEEE Region 1
Annual Student Conference.
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